20,067 research outputs found

    Stellar Motions in the Polar Ring Galaxy NGC 4650A

    Full text link
    We present the first measurement of the stellar kinematics in the polar ring of NGC 4650A. There is well defined rotation, with the stars and gas rotating in the same direction, and with similar amplitude. The gaseous and stellar kinematics suggest an approximately flat rotation curve, providing further support for the hypothesis that the polar material resides in a disk rather than in a ring. The kinematics of the emission line gas at and near the center of the S0 suggests that the polar disk lacks a central hole. We have not detected evidence for two, equal mass, counterrotating stellar polar streams, as is predicted in the resonance levitation model proposed by Tremaine & Yu. A merger seems the most likely explanation for the structure and kinematics of NGC 4650A.Comment: 4 pages, accepted for publication in ApJ Letter

    Shock-Wave Heating Model for Chondrule Formation: Prevention of Isotopic Fractionation

    Get PDF
    Chondrules are considered to have much information on dust particles and processes in the solar nebula. It is naturally expected that protoplanetary disks observed in present star forming regions have similar dust particles and processes, so study of chondrule formation may provide us great information on the formation of the planetary systems. Evaporation during chondrule melting may have resulted in depletion of volatile elements in chondrules. However, no evidence for a large degree of heavy-isotope enrichment has been reported in chondrules. In order to meet this observed constraint, the rapid heating rate at temperatures below the silicate solidus is required to suppress the isotopic fractionation. We have developed a new shock-wave heating model taking into account the radiative transfer of the dust thermal continuum emission and the line emission of gas molecules and calculated the thermal history of chondrules. We have found that optically-thin shock waves for the thermal continuum emission from dust particles can meet the rapid heating constraint, because the dust thermal emission does not keep the dust particles high temperature for a long time in the pre-shock region and dust particles are abruptly heated by the gas drag heating in the post-shock region. We have also derived the upper limit of optical depth of the pre-shock region using the radiative diffusion approximation, above which the rapid heating constraint is not satisfied. It is about 1 - 10.Comment: 58 pages, including 5 tables and 15 figures, accepted for publication in The Astrophysical Journa

    The Public Pays, the Corporation Profits: The Emasculation of the Public Purpose Doctrine and a Not-for-Profit Solution

    Get PDF
    Massive subsidies by state and local governments to private corporations for the purpose of inducing such corporations to retain or locate facilities in their respective locales are attracting greater public scrutiny. Commentators are beginning to question whether the public entity receives benefits anywhere near the value of the subsidy. In Virginia, where Governor George Allen proposed giving the Walt Disney Corporation $163 million in subsidies to establish a theme park, the public responded with bumper stickers that read Virginia Pays-Disney Profits

    Gluon Fusion induced Zg and Zgg Productions in the Standard Model at the LHC

    Full text link
    We report calculations of the gluon induced Zg and Zgg productions in the Standard Model at the LHC operating at both 7 TeV and 14 TeV collision energy. We present total cross sections and differential distributions of the processes and compare them with the leading and next-to-leading order QCD pp -> Z+1 jet, Z+2 jets results. Our results show that the gluon induced Zg and Zgg productions contribute to pp -> Z+1 jet, Z+2 jets at 1% level.Comment: 8 pages, 5 figure

    A really simple approximation of smallest grammar

    Full text link
    In this paper we present a really simple linear-time algorithm constructing a context-free grammar of size O(g log (N/g)) for the input string, where N is the size of the input string and g the size of the optimal grammar generating this string. The algorithm works for arbitrary size alphabets, but the running time is linear assuming that the alphabet Sigma of the input string can be identified with numbers from 1,ldots, N^c for some constant c. Algorithms with such an approximation guarantee and running time are known, however all of them were non-trivial and their analyses were involved. The here presented algorithm computes the LZ77 factorisation and transforms it in phases to a grammar. In each phase it maintains an LZ77-like factorisation of the word with at most l factors as well as additional O(l) letters, where l was the size of the original LZ77 factorisation. In one phase in a greedy way (by a left-to-right sweep and a help of the factorisation) we choose a set of pairs of consecutive letters to be replaced with new symbols, i.e. nonterminals of the constructed grammar. We choose at least 2/3 of the letters in the word and there are O(l) many different pairs among them. Hence there are O(log N) phases, each of them introduces O(l) nonterminals to a grammar. A more precise analysis yields a bound O(l log(N/l)). As l \leq g, this yields the desired bound O(g log(N/g)).Comment: Accepted for CPM 201

    Scout motor performance analysis and prediction study /PAPS/

    Get PDF
    Scout motor performance analysis and predictio

    The chemical connection between 67P/C-G and IRAS 16293-2422

    Full text link
    The chemical evolution of a star- and planet-forming system begins in the prestellar phase and proceeds across the subsequent evolutionary phases. The chemical trail from cores to protoplanetary disks to planetary embryos can be studied by comparing distant young protostars and comets in our Solar System. One particularly chemically rich system that is thought to be analogous to our own is the low-mass IRAS 16293-2422. ALMA-PILS observations have made the study of chemistry on the disk scales (< 100 AU) of this system possible. Under the assumption that comets are pristine tracers of the outer parts of the innate protosolar disk, it is possible to compare the composition of our infant Solar System to that of IRAS 16293-2422. The Rosetta mission has yielded a wealth of unique in situ measurements on comet 67P/C-G, making it the best probe to date. Herein, the initial comparisons in terms of the chemical composition and isotopic ratios are summarized. Much work is still to be carried out in the future as the analysis of both of these data sets is still ongoing.Comment: To appear in "Astrochemistry VII -- Through the Cosmos from Galaxies to Planets", proceedings of the IAU Symposium No. 332, 2017, Puerto Varas, Chile. M. Cunningham, T. Millar and Y. Aikawa, eds. (6 pages
    corecore